
Computer Science Paper 3
Practical

Model Paper 2025
Time Allowed: 2 hours 30 minutes​
Total Marks: 120

You must answer on the question paper.

You must bring a soft pencil (preferably type B or HB), a clean eraser, and a dark blue or black pen. You
may use a simple calculator if needed.

Before attempting the paper, write your name, candidate number, centre name, and centre number clearly in
the designated spaces.

Instructions for Candidates

●​ Answer all questions.
●​ Write your answer to each question in the space provided.
●​ You must show all necessary working clearly.
●​ Do not use an erasable pen or correction fluid.
●​ Avoid writing over any barcodes printed on the paper.

Information for Candidates
●​ This paper consists of a total of 120 marks.
●​ The number of marks assigned for every question or its parts is indicated within brackets [].

Please read all questions carefully and follow the instructions exactly to ensure your responses are properly
evaluated.

Q1.
The following flowchart represents a program segment that determines whether a number is prime.

(a) Write the corresponding pseudo code for this flowchart using if, for, and break statements.​ ​ [6]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(b) You are required to design a binary search algorithm for an ascending list of numbers.

(i)​ Write the pseudo code of the algorithm.​ ​ ​ ​ ​ ​ ​ ​ [3]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(ii)​ Trace the algorithm manually for the list:​
[2, 4, 6, 8, 10, 12, 14, 16] to find the value 10.​
Show all variable values (low, high, mid). ​ ​ ​ ​ ​ ​ ​ ​ ​ [4]

(c) Two sorting algorithms are shown below.

Algorithm A (Bubble Sort) Algorithm B (Insertion Sort)

for i in range(len(A)-1):
 for j in range(len(A)-1):
 if A[j] > A[j+1]:
 A[j], A[j+1] = A[j+1], A[j]

for i in range(1, len(A)):
 key = A[i]
 j = i - 1
 while j >= 0 and A[j] > key:
 A[j+1] = A[j]
 j -= 1
 A[j+1] = key

i. State one difference between the working mechanism of Algorithm A and B. ​ ​ ​ ​ [2]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

ii. Which algorithm is more efficient for nearly sorted data? Justify your answer. ​ ​ ​ ​ [2]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

iii. Perform a single pass of Algorithm A for the list [9, 5, 2, 7]. Show the array after the pass. ​ ​ [3]

(d) The Fibonacci sequence can be defined recursively as:​
F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)

i.​ Write a recursive function in Python named Fibonacci (n) that prints the nth term. ​​ ​ [4]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

ii. Explain two advantages and two disadvantages of recursion compared to iteration. ​ ​ ​ [4]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Q1 TOTAL MARKS: 28

Q2.
(a)​ A Python program is intended to calculate the average of 5 test scores but contains errors.

def average_score():
 total = 0
 for i in range(1,5):
 score = input("Enter score: ")
 total = total + score
 avg = total / 5
 print("Average score is: " + avg)
average_score()

i. Identify four errors in the code (syntax or logic). ​ ​ ​ ​ ​ ​ ​ ​ [4]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

ii. Write the corrected program. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [6]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(b)​ A teacher maintains a list of student names and their marks.

students = ["Ali", "Sara", "Bilal", "Hira"]
marks = [85, 92, 71, 66]
for i in range(5):
 print(students[i], ":", marks[i])

i. What runtime error will occur in this code? ​ ​ ​ ​ ​ ​ ​ ​ [2]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

ii. Rewrite the for loop to correct the error and ensure all data displays correctly. ​ ​ ​ ​ [2]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

iii. Modify the code to display only students who scored above 80.​ ​ ​ ​ ​ ​ [3]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

iv. Show the expected output. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [3]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(c) You are given a file data.txt containing integers separated by spaces.​
Write a Python code segment to:
1.​ Open the file and read its contents.
2.​ Display the largest and smallest numbers.
3.​ Close the file.
(Use appropriate file-handling syntax and comments.)​ ​ ​ ​ ​ ​ ​ [8]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(d)​ The following function is meant to check whether a given string is a palindrome (reads same forward
and backward).

def palindrome(word):
 rev = ""
 for i in range(len(word)):
 rev = rev + word[i]
 if word == rev:
 return True
 else:
 return False

i. Identify the logical error. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [2]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

ii. Write the corrected function. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [4]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

iii. Predict the output of the corrected function for each input:​ ​ ​ ​ ​ ​ [3]
●​ palindrome("level")
●​ palindrome("python")
●​ palindrome("madam")
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

iv. Suggest one test case for a boundary condition and justify your choice. ​​ ​ ​ ​ [3]

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Q2 TOTAL MARKS: 40

Q3.
A city’s smart parking management system records available parking slots and car entries.​
Each parking slot is represented by a class Slot with attributes:

SlotID, Status (Empty or Occupied), and VehicleNo.

(a)​ What do you understand by base class in OOP. ​ ​ ​ ​ ​ ​ ​ [2]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(b) Define a Python class Slot with:
●​ A constructor to initialize all attributes.
●​ A method display_info() that prints the slot details neatly.​ ​ ​ ​ ​ ​ [6]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(c) Write a function assign_slot(slots, vehicle_no) that:
●​ Finds the first Empty slot in the list slots.
●​ Assigns the vehicle number and changes the slot’s status to Occupied.
●​ Prints an appropriate message.​
(Assume there are 10 slots in the parking system.)​ ​ ​ ​ ​ ​ ​ ​ [8]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(d) Write another function release_slot(slots, vehicle_no) that:
●​ Searches for the vehicle number,
●​ Frees the slot (sets status to Empty), and
●​ Displays confirmation.​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [8]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(e) Represent the parking slots in a tabular format after assigning three cars:​ ​ ​ ​ [8]

SlotID VehicleNo Status

S1 ABC-101 Occupied

S2 XYZ-235 Occupied

S3 LMN-412 Occupied

S4–S10 – Empty

Write the Python list initialization to represent this structure.
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Q3 TOTAL MARKS: 32

Q4.
(a)​ Assume the system records parking data over time and uses AI-based prediction to forecast busy hours.

Explain two software testing methods suitable for verifying the Smart Parking System before deployment.
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [2]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

(b)​ Explain with an example how a simple supervised machine learning approach (like linear regression
or classification) could be integrated into this system to predict slot availability.​
(Answer in 80–100 words, optionally with a labelled diagram or chart.)​ ​ ​ ​ [10]

(c)​ Explain, with examples, how the Smart Parking System could use feedback from users and sensors
after deployment to enhance performance and user experience.​ ​ ​ ​ ​ ​ [8]
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Q4 TOTAL MARKS: 20

Computer Science Paper 3
Answering key & Marking Scheme - Practical

Model Paper 2025
Time Allowed: 2 hours 30 minutes​
Total Marks: 120

You must answer on the question paper.

You must bring a soft pencil (preferably type B or HB), a clean eraser, and a dark blue or black pen. You
may use a simple calculator if needed.

Before attempting the paper, write your name, candidate number, centre name, and centre number clearly in
the designated spaces.

Instructions for Candidates

●​ Answer all questions.
●​ Write your answer to each question in the space provided.
●​ You must show all necessary working clearly.
●​ Do not use an erasable pen or correction fluid.
●​ Avoid writing over any barcodes printed on the paper.

Information for Candidates
●​ This paper consists of a total of 120 marks.
●​ The number of marks assigned for every question or its parts is indicated within brackets [].

Please read all questions carefully and follow the instructions exactly to ensure your responses are properly
evaluated.

Q1.The following flowchart represents a program segment that determines whether a number is
prime.

(a) Write the corresponding pseudo code for this flowchart using if, for, and break statements.​ [6]
Answer:​
BEGIN​
 INPUT number​
 flag ← 0​
 FOR i ← 2 TO number/2 DO​
 IF number MOD i = 0 THEN​
 flag ← 1​
 ENDIF​
 ENDFOR​
 IF flag = 0 THEN​
 OUTPUT "Prime"​
 ELSE​
 OUTPUT "Not Prime"​
 ENDIF​
END
Marking Scheme:
• 1 mark for correctly accepting input.​
• 2 marks for implementing the correct loop and divisor check.​
• 2 marks for using the correct condition to identify a prime number.​
• 1 mark for producing the correct output.

 (b) You are required to design a binary search algorithm for an ascending list of numbers.
(i)​ Write the pseudo code of the algorithm.​ ​ ​ ​ ​ ​ ​ ​ [3]
Answer:
BEGIN
 INPUT number
 flag ← 0
 FOR i ← 2 TO number / 2 DO
 IF number MOD i = 0 THEN
 flag ← 1

 BREAK
 ENDIF
 ENDFOR
 IF flag = 0 THEN
 OUTPUT "Prime"
 ELSE
 OUTPUT "Not Prime"
 ENDIF
END
Marking Scheme:

Criterion Description Marks
Initialization Correctly initializes low, high, and loop condition (WHILE low ≤ high). 1

Logic of mid and comparisons Correct computation of mid and comparisons with search_value. 1

Update and output Correct updating of low or high and proper output of result. 1

(ii)​ Trace the algorithm manually for the list:​
[2, 4, 6, 8, 10, 12, 14, 16] to find the value 10.​
Show all variable values (low, high, mid). ​​ ​ ​ ​ ​ ​ ​ ​ [4]
Answer:

Step low high mid list[mid] Comparison Action
1 0 7 (0+7)/2 = 3 8 8 < 10 → search right half low = 4
2 4 7 (4+7)/2 = 5 12 12 > 10 → search left half high = 4
3 4 4 (4+4)/2 = 4 10 10 = 10 FOUND

Marking Scheme:
• 1 mark for setting the initial values of low, high, and mid.​
• 1 mark for correctly updating mid in each iteration.​
• 1 mark for performing the correct comparison and action.​
• 1 mark for producing the correct final output.

(c) Two sorting algorithms are shown below.

Algorithm A (Bubble Sort) Algorithm B (Insertion Sort)

for i in range(len(A)-1):
 for j in range(len(A)-1):
 if A[j] > A[j+1]:
 A[j], A[j+1] = A[j+1], A[j]

for i in range(1, len(A)):
 key = A[i]
 j = i - 1
 while j >= 0 and A[j] > key:
 A[j+1] = A[j]
 j -= 1
 A[j+1] = key

i. State one difference between the working mechanism of Algorithm A and B. ​ ​ ​ [2]
Answer:

Aspect Algorithm A – Bubble Sort Algorithm B – Insertion Sort

Working
mechanism

Repeatedly compares adjacent elements and
swaps them until the largest element

Builds the sorted list one element at a time
by inserting each new element into its

“bubbles up” to its correct position after
each pass.

correct position among already sorted
elements.

Marking Scheme (2 marks):
• 1 mark for correctly describing the mechanism of Bubble Sort.​
• 1 mark for correctly describing the mechanism of Insertion Sort.

ii. Which algorithm is more efficient for nearly sorted data? Justify your answer. ​ ​ ​ [2]
Answer:
Algorithm B (Insertion Sort) is more efficient for nearly sorted data.

Justification:​
Insertion Sort requires very few comparisons and shifts when elements are already close to their correct
positions, resulting in a time complexity close to O(n). In contrast, Bubble Sort still performs unnecessary
comparisons and passes through the list, making it slower.
Marking Scheme:
• 1 mark for correctly identifying Insertion Sort.​
• 1 mark for providing a logical justification (fewer comparisons/shifts for nearly sorted data).

iii. Perform a single pass of Algorithm A for the list [9, 5, 2, 7]. Show the array after the pass. ​ [3]
Answer:
Algorithm A – Bubble Sort (Single Pass):​
Compare adjacent elements and swap if the first is greater than the second.

Comparison Elements Compared Swap? List after comparison
1 9 and 5 Yes [5, 9, 2, 7]
2 9 and 2 Yes [5, 2, 9, 7]
3 9 and 7 Yes [5, 2, 7, 9]

Array after one pass: [5, 2, 7, 9]

Marking Scheme (3 marks):
• 1 mark for correctly showing pairwise comparisons.​
• 1 mark for correctly indicating the swaps.​
• 1 mark for showing the correct final list after the first pass.

(d) The Fibonacci sequence can be defined recursively as:​
F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)
i.​ Write a in Python named Fibonacci (n) that prints the nth term. ​ ​ ​ ​ [4]
Answer:
def Fibonacci(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return Fibonacci(n-1) + Fibonacci(n-2)

Marking Scheme:
• 1 mark for correctly handling the base case when n == 0.​
• 1 mark for correctly handling the base case when n == 1.​

• 1 mark for using the correct recursive call: Fibonacci(n-1) + Fibonacci(n-2).​
• 1 mark for correct function structure and return/output statement.

ii. Explain two advantages and two disadvantages of recursion compared to iteration. ​ ​ [4]
Answer:
Advantages of Recursion:
1.​ Simpler logic and readability: Complex problems like tree traversal or Fibonacci sequence become
easier to understand and implement recursively.
2.​ Reduces code length: Recursive functions often require fewer lines of code than equivalent iterative
solutions.
Disadvantages of Recursion:
1.​ Higher memory usage: Each recursive call adds a new layer to the call stack, consuming more
memory.
2.​ Slower execution: Recursive calls involve overhead due to repeated function calls and return
operations, making them less efficient than iteration.
Marking Scheme:
• 1 mark each for two valid advantages.​
• 1 mark each for two valid disadvantages.​

Q1 TOTAL MARKS: 28

Q2.
(a)​ A Python program is intended to calculate the average of 5 test scores but contains errors.

def average_score():
 total = 0
 for i in range(1,5):
 score = input("Enter score: ")
 total = total + score
 avg = total / 5
 print("Average score is: " + avg)
average_score()

i. Identify four errors in the code (syntax or logic). ​ ​ ​ ​ ​ ​ ​ [4]
Answer:
 The loop runs only 4 times​
range(1,5) collects 4 scores instead of 5.
 Input is not converted to a number​
score = input() returns a string but is added to an integer.
 String concatenation error​
"Average score is: " + avg → cannot add string and number.
 Logical error in average calculation​
Dividing by 5 even though only 4 scores are taken.

Marking Scheme:​
• 1 mark for identifying that the loop runs only 4 times (range(1,5)).​
• 1 mark for identifying that input() is not converted to a numeric type.​
• 1 mark for identifying that the average calculation is wrong (divides by 5 while adding 4 scores).​
• 1 mark for identifying that the print statement incorrectly concatenates a string with a number.

ii. Write the corrected program. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [6]
Answer:
def average_score():
 total = 0
 num_scores = 5 # number of scores to collect

 for i in range(num_scores):
 score = float(input("Enter score: "))
 total += score
 avg = total / num_scores
 print("Average score is:", avg)

average_score()
Marking Scheme:

Criterion Marks
1. Correct loop range to collect all 5 scores (e.g., for i in range(5) or using a
variable like num_scores = 5)

1 mark

2. Correct conversion of input to numeric type (int() or float()) 1 mark
3. Correct accumulation of total using total += score 1 mark
4. Correct calculation of average using division by 5 (or variable num_scores) 1 mark
5. Correct print statement without string–number concatenation error (e.g., using
comma or str())

1 mark

6. Correct function structure and function call (def average_score(): and
average_score())

1 mark

(b)​ A teacher maintains a list of student names and their marks.

students = ["Ali", "Sara", "Bilal", "Hira"]
marks = [85, 92, 71, 66]
for i in range(5):
 print(students[i], ":", marks[i])

i. What runtime error will occur in this code? ​ ​ ​ ​ ​ ​ ​ ​ [2]
Answer:
The program will give an IndexError: list index out of range because the loop goes to index 4, but both lists
only have 4 items (last index is 3).

Marking Scheme:
• 1 mark for saying the error is IndexError.​
• 1 mark for saying the loop goes past the list length.

ii. Rewrite the for loop to correct the error and ensure all data displays correctly. ​ ​ ​ [2]
Answer:
students = ["Ali", "Sara", "Bilal", "Hira"]
marks = [85, 92, 71, 66]

for i in range(len(students)):
 print(students[i], ":", marks[i])

Marking Scheme:​
• 1 mark for using len(students) to determine the loop range​
• 1 mark for correctly displaying all student names with their marks

iii. Modify the code to display only students who scored above 80.​ ​ ​ ​ ​ [3]
Answer:
students = ["Ali", "Sara", "Bilal", "Hira"]
marks = [85, 92, 71, 66]

for i in range(len(students)):
 if marks[i] > 80:
 print(students[i], ":", marks[i])

Marking Scheme:​
• 1 mark for using a loop to go through all students​
• 1 mark for using an if condition to check marks[i] > 80​
• 1 mark for correctly printing only the students with marks above 80

iv. Show the expected output. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [3]
Answer:
Ali : 85
Sara : 92

Marking Scheme:​
• 1 mark for including "Ali : 85"​
• 1 mark for including "Sara : 92"​
• 1 mark for showing only the students who scored above 80

(c) You are given a file data.txt containing integers separated by spaces.​
Write a Python code segment to:
1.​ Open the file and read its contents.
2.​ Display the largest and smallest numbers.
3.​ Close the file.
(Use appropriate file-handling syntax and comments.)​ ​ ​ ​ ​ ​ ​ [8]
Answer:
Open the file in read mode
file = open("data.txt", "r")

Read the contents of the file
data = file.read()

Split the contents into a list of numbers and convert to integers
numbers = [int(x) for x in data.split()]

Find the largest and smallest numbers
largest = max(numbers)
smallest = min(numbers)

Display the results
print("Largest number:", largest)
print("Smallest number:", smallest)

Close the file
file.close()

Marking Scheme:​
• 1 mark for opening the file correctly​
• 1 mark for reading the file contents​
• 2 marks for splitting the data and converting to integers​
• 1 mark for finding the largest number​
• 1 mark for finding the smallest number​
• 1 mark for displaying the largest number correctly​
• 1 mark for displaying the smallest number correctly​
• 1 mark for closing the file

(d)​ The following function is meant to check whether a given string is a palindrome (reads same
forward and backward).\

def palindrome(word):
 rev = ""
 for i in range(len(word)):
 rev = rev + word[i]
 if word == rev:
 return True
 else:
 return False

i. Identify the logical error. ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [2]
Answer:​
• The function does not reverse the string.​
• rev = rev + word[i] adds characters in the original order instead of reverse order, so rev is the same as
word and the palindrome check is incorrect.

Marking Scheme:​
• 1 mark for identifying that the string is not reversed correctly​
• 1 mark for explaining that the comparison with the original word will always be true for all strings

ii. Write the corrected function. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [4]
Answer:
def palindrome(word):
 rev = ""
 for i in range(len(word)-1, -1, -1): # Loop from end to start
 rev = rev + word[i]
 if word == rev:
 return True
 else:
 return False

Marking Scheme:​
• 1 mark for initializing rev correctly​
• 1 mark for using a loop that reverses the string (range(len(word)-1, -1, -1))​
• 1 mark for correctly accumulating characters in reverse order​
• 1 mark for returning True if word == rev and False otherwise

iii. Predict the output of the corrected function for each input:​ ​ ​ ​ ​ ​ [3]
●​ palindrome("level")
●​ palindrome("python")
●​ palindrome("madam")
Answer:​
• palindrome("level") → True​
• palindrome("python") → False​
• palindrome("madam") → True

Marking Scheme:​
• 1 mark for correctly predicting the output of "level"​
• 1 mark for correctly predicting the output of "python"​
• 1 mark for correctly predicting the output of "madam"

iv. Suggest one test case for a boundary condition and justify your choice. ​ ​ ​ ​ [3]
Answer:​
• Test case: palindrome("") (empty string)​
• Justification: An empty string is a boundary case because it has zero length. The function should handle it
correctly and return True, as an empty string reads the same forward and backward.

Marking Scheme:​
• 1 mark for suggesting a valid boundary test case​
• 1 mark for explaining why it is a boundary case​
• 1 mark for correct justification of the expected result

Q2 TOTAL MARKS: 40

Q3.
A city’s smart parking management system records available parking slots and car entries.​
Each parking slot is represented by a class Slot with attributes:

SlotID, Status (Empty or Occupied), and VehicleNo.

(a)​ What do you understand by base class in OOP. ​ ​ ​ ​ ​ ​ ​ [2]
Answer:​
• A base class (also called a parent class or superclass) is a class that provides common attributes and
methods which can be inherited by other classes.​
• It serves as a template for creating derived classes, allowing code reuse and establishing a hierarchical
relationship in object-oriented programming.

Marking Scheme:​
• 1 mark for defining a base class as a parent or superclass​
• 1 mark for explaining that it provides attributes/methods that can be inherited

(b) Define a Python class Slot with:
●​ A constructor to initialize all attributes.
●​ A method display_info() that prints the slot details neatly.​ ​ ​ ​ ​ [6]
Answer:
class Slot:
 def __init__(self, SlotID, Status, VehicleNo):
 self.SlotID = SlotID
 self.Status = Status
 self.VehicleNo = VehicleNo
 def display_info(self):
 print("Slot ID:", self.SlotID)
 print("Status:", self.Status)
 print("Vehicle Number:", self.VehicleNo)
Marking Scheme:​
• 1 mark for defining the class correctly​
• 2 marks for writing the constructor (init) with all attributes​
• 1 mark for initializing each attribute correctly​
• 2 marks for defining display_info() that prints all slot details neatly

(c) Write a function assign_slot(slots, vehicle_no) that:
●​ Finds the first Empty slot in the list slots.
●​ Assigns the vehicle number and changes the slot’s status to Occupied.

●​ Prints an appropriate message.​
(Assume there are 10 slots in the parking system.)​ ​ ​ ​ ​ ​ ​ [8]
Answer:
def assign_slot(slots, vehicle_no):
 # Loop through all slots to find the first empty one
 for slot in slots:
 if slot.Status == "Empty":
 slot.VehicleNo = vehicle_no
 slot.Status = "Occupied"
 print(f"Vehicle {vehicle_no} has been assigned to Slot {slot.SlotID}.")
 return
 # If no empty slot is found
 print("No empty slots available.")
Marking Scheme:​
• 2 marks for defining the function correctly with parameters slots and vehicle_no​
• 2 marks for correctly finding the first Empty slot​
• 2 marks for assigning the vehicle number and updating the status​
• 1 mark for printing an appropriate success message​
• 1 mark for handling the case when no empty slot is available

(d) Write another function release_slot(slots, vehicle_no) that:
●​ Searches for the vehicle number,
●​ Frees the slot (sets status to Empty), and
●​ Displays confirmation.​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [8]
Answer:
def release_slot(slots, vehicle_no):
 # Loop through all slots to find the vehicle
 for slot in slots:
 if slot.VehicleNo == vehicle_no:
 slot.VehicleNo = None
 slot.Status = "Empty"
 print(f"Vehicle {vehicle_no} has been released from Slot {slot.SlotID}.")
 return
 # If vehicle number is not found
 print(f"Vehicle {vehicle_no} not found in any slot.")
Marking Scheme:​
• 2 marks for defining the function correctly with parameters slots and vehicle_no​
• 2 marks for correctly searching for the vehicle number​
• 2 marks for freeing the slot (setting status to Empty and clearing vehicle number)​
• 1 mark for printing a confirmation message​
• 1 mark for handling the case when the vehicle number is not found

 (e) Represent the parking slots in a tabular format after assigning three cars:​ ​ ​ [8]

SlotID VehicleNo Status

S1 ABC-101 Occupied

S2 XYZ-235 Occupied

S3 LMN-412 Occupied

S4–S10 – Empty

Write the Python list initialization to represent this structure.
Answer:
slots = [
 Slot("S1", "Occupied", "ABC-101"),

 Slot("S2", "Occupied", "XYZ-235"),
 Slot("S3", "Occupied", "LMN-412"),
 Slot("S4", "Empty", None),
 Slot("S5", "Empty", None),
 Slot("S6", "Empty", None),
 Slot("S7", "Empty", None),
 Slot("S8", "Empty", None),
 Slot("S9", "Empty", None),
 Slot("S10", "Empty", None)
]
Marking Scheme:
• 2 marks for correctly representing the first three occupied slots with vehicle numbers
• 2 marks for correctly representing the remaining empty slots
• 2 marks for correct use of Slot class constructor for initialization
• 2 marks for matching SlotID, VehicleNo, and Status accurately

Q3 TOTAL MARKS: 32

Q4.
(a)​ Assume the system records parking data over time and uses AI-based prediction to forecast
busy hours.
Explain two software testing methods suitable for verifying the Smart Parking System before
deployment.​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ [2]
Answer:​
• Unit Testing: This method tests individual components or functions of the system (e.g.,
assigning/releasing slots, data recording, prediction algorithms) to ensure each part works correctly.

• System Testing: This method tests the complete integrated system, including AI-based predictions, slot
management, and user interface, to verify that the Smart Parking System functions as expected in real-world
scenarios.

Marking Scheme:​
• 1 mark for correctly explaining unit testing​
• 1 mark for correctly explaining system testing

(b)​ Explain with an example how a simple supervised machine learning approach (like linear
regression or classification) could be integrated into this system to predict slot availability.​
(Answer in 80–100 words, optionally with a labelled diagram or chart.)​ ​ ​ [10]
Answer:​
A simple supervised learning approach can be used to predict parking slot availability based on historical
data. For example, a linear regression model can be trained using past data with features like time of day,
day of week, and number of cars entering/exiting as inputs, and available slots as the target. The model
learns patterns to forecast busy hours and expected free slots.

Example:
Input: hour=9, day=Monday, current_occupied=70%
Output: Predicted available slots = 15

Marking Scheme:​
• 3 marks for explaining supervised learning in context​
• 3 marks for identifying features and target variable​
• 2 marks for providing a clear example of prediction​
• 2 marks for optional diagram/chart or clear description

​ ​
(c)​ Explain, with examples, how the Smart Parking System could use feedback from users and
sensors after deployment to enhance performance and user experience.​ ​ ​ ​ [8]
Answer:​
After deployment, the Smart Parking System can collect feedback from users (e.g., satisfaction surveys,
complaints about finding slots) and sensor data (e.g., occupancy sensors, entry/exit counts). This data can be
used to improve slot allocation algorithms, optimize parking predictions, and adjust dynamic pricing.

Examples:
●​ If users report long waits at certain hours, the system can predict busy periods and suggest alternative
slots.
●​ Sensor data showing frequent empty slots in some areas can be used to reassign vehicles efficiently.
●​ Collecting feedback on app usability can help enhance the user interface for smoother navigation and
notifications.

Marking Scheme:​
• 2 marks for explaining the role of user feedback​
• 2 marks for explaining the role of sensor data​
• 2 marks for giving examples related to prediction and slot allocation​
• 2 marks for giving examples related to improving user experience or interface

Q4 TOTAL MARKS: 20

	CS-HSSC Adv-Model Paper 3.docx
	Computer Science Paper 3
	Practical
	Model Paper 2025
	Instructions for Candidates
	Information for Candidates
	Q1.
	The following flowchart represents a program segment that determines whether a number is prime.
	(b) You are required to design a binary search algorithm for an ascending list of numbers.
	(c) Two sorting algorithms are shown below.
	(d) The Fibonacci sequence can be defined recursively as:​F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)
	Q2.
	(a)​A Python program is intended to calculate the average of 5 test scores but contains errors.
	(b)​A teacher maintains a list of student names and their marks.
	(c) You are given a file data.txt containing integers separated by spaces.​Write a Python code segment to:
	(d)​The following function is meant to check whether a given string is a palindrome (reads same forward and backward).

	Q3.
	(d) Write another function release_slot(slots, vehicle_no) that:
	(e) Represent the parking slots in a tabular format after assigning three cars:​​​​[8]
	Explain two software testing methods suitable for verifying the Smart Parking System before deployment.​​​​​​​​​​ ​​​ ​[2]

	CS-HSSC Adv-Paper 3-Answer key & Marking Scheme.docx
	Computer Science Paper 3
	Answering key & Marking Scheme - Practical
	Model Paper 2025
	Instructions for Candidates
	Information for Candidates
	Q1.The following flowchart represents a program segment that determines whether a number is prime.
	(c) Two sorting algorithms are shown below.
	• 1 mark for correctly showing pairwise comparisons.​• 1 mark for correctly indicating the swaps.​• 1 mark for showing the correct final list after the first pass.
	(d) The Fibonacci sequence can be defined recursively as:​F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)
	Q2.
	(a)​A Python program is intended to calculate the average of 5 test scores but contains errors.
	(b)​A teacher maintains a list of student names and their marks.
	
	
	(c) You are given a file data.txt containing integers separated by spaces.​Write a Python code segment to:
	(d)​The following function is meant to check whether a given string is a palindrome (reads same forward and backward).\

	Q3.
	
	(d) Write another function release_slot(slots, vehicle_no) that:
	
	 (e) Represent the parking slots in a tabular format after assigning three cars:​​​[8]
	Explain two software testing methods suitable for verifying the Smart Parking System before deployment.​​​​​​​​​​ ​​​ [2]

