Computer Science Paper 3
Practical
Model Paper 2025

Time Allowed: 2 hours 30 minutes
Total Marks: 120

You must answer on the question paper.

You must bring a soft pencil (preferably type B or HB), a clean eraser, and a dark blue or black pen. You
may use a simple calculator if needed.

Before attempting the paper, write your name, candidate number, centre name, and centre number clearly in
the designated spaces.

Instructions for Candidates

Answer all questions.

Write your answer to each question in the space provided.
You must show all necessary working clearly.

Do not use an erasable pen or correction fluid.

Avoid writing over any barcodes printed on the paper.

Information for Candidates

e This paper consists of a total of 120 marks.
e The number of marks assigned for every question or its parts is indicated within brackets [].

Please read all questions carefully and follow the instructions exactly to ensure your responses are properly
evaluated.

Ql.

The following flowchart represents a program segment that determines whether a number is prime.

Start

/mauéu. b/

-@- - smaller = a

TTrue -
smaller =b > / Printa /

False

Is aki==
and b%i==07?

(a) Write the corresponding pseudo code for this flowchart using if, for, and break statements. [6]

(b) You are required to design a binary search algorithm for an ascending list of numbers.

(i) Write the pseudo code of the algorithm. [3]
(i) Trace the algorithm manually for the list:

[2,4,6,8,10, 12, 14, 16] to find the value 10.

Show all variable values (low, high, mid). [4]

(c) Two sorting algorithms are shown below.

Algorithm A (Bubble Sort)

Algorithm B (Insertion Sort)

for i in range(len(A)-1):

for i in range(1, len(A)):

for j in range(len(A)-1): key = A[i]
if A[j] > A[j+1]: j=i-1
Aljl, Alj+1]1=A[+11, Alj] while j >= 0 and A[j] > key:
Alj+1]1=A[j]
j=1
Afj+1] = key

1. State one difference between the working mechanism of Algorithm A and B. [2]

ii. Which algorithm is more efficient for nearly sorted data? Justify your answer. [2]

iii. Perform a single pass of Algorithm A for the list [9, 5, 2, 7]. Show the array after the pass. [3]

(d) The Fibonacci sequence can be defined recursively as:
F(0)=0, F(1)=1, F(n) = F(n-1) + F(n-2)

1. Write a recursive function in Python named Fibonacci (n) that prints the nth term. [4]

ii. Explain two advantages and two disadvantages of recursion compared to iteration. [4]

Q1 TOTAL MARKS: 28

Q2.

(a) A Python program is intended to calculate the average of 5 test scores but contains errors.

def average score():
total =0
for i in range(1,5):
score = input("Enter score: ")
total = total + score
avg =total / 5
print("Average score is: " + avg)
average score()

1. Identify four errors in the code (syntax or logic). [4]

ii. Write the corrected program. [6]

(b) A teacher maintains a list of student names and their marks.

students = ["Ali", "Sara", "Bilal", "Hira"]
marks = [85, 92, 71, 66]
for 1 in range(5):

print(students[i], ":", marks[i])

1. What runtime error will occur in this code? [2]

i1. Rewrite the for loop to correct the error and ensure all data displays correctly. [2]

i11. Modify the code to display only students who scored above 80. [3]

iv. Show the expected output. [3]

(c) You are given a file data.txt containing integers separated by spaces.
Write a Python code segment to:

1. Open the file and read its contents.

2. Display the largest and smallest numbers.

3. Close the file.

(Use appropriate file-handling syntax and comments.) [8]

(d) The following function is meant to check whether a given string is a palindrome (reads same forward
and backward).

def palindrome(word):

reV — nn

for i1 in range(len(word)):
rev = rev + word[i]

if word == rev:
return True

else:
return False

1. Identify the logical error. [2]

11. Write the corrected function. [4]

iii. Predict the output of the corrected function for each input: [3]
° palindrome("level")
° palindrome("python")

° palindrome("madam")

iv. Suggest one test case for a boundary condition and justify your choice. [3]
Q2 TOTAL MARKS: 40

Q3.

A city’s smart parking management system records available parking slots and car entries.
Each parking slot is represented by a class Slot with attributes:

SlotID, Status (Empty or Occupied), and VehicleNo.

(@) What do you understand by base class in OOP. [2]

(b) Define a Python class Slot with:
° A constructor to initialize all attributes.
° A method display_info() that prints the slot details neatly. [6]

(c) Write a function assign_slot(slots, vehicle _no) that:

o Finds the first Empty slot in the list slots.

o Assigns the vehicle number and changes the slot’s status to Occupied.

° Prints an appropriate message.

(Assume there are 10 slots in the parking system.) [8]

(d) Write another function release_slot(slots, vehicle no) that:

° Searches for the vehicle number,

. Frees the slot (sets status to Empty), and

o Displays confirmation. [8]

(e) Represent the parking slots in a tabular format after assigning three cars:

[8]

SlotID VehicleNo Status
S1 ABC-101 Occupied
S2 XYZ-235 Occupied
S3 LMN-412 Occupied

S4-S10 — Empty

Write the Python list initialization to represent this structure.

Q4.

Q3 TOTAL MARKS: 32

(@) Assume the system records parking data over time and uses Al-based prediction to forecast busy hours.

Explain two software testing methods suitable for verifying the Smart Parking System before deployment.

[2]

(b) Explain with an example how a simple supervised machine learning approach (like linear regression
or classification) could be integrated into this system to predict slot availability.
(Answer in 80—100 words, optionally with a labelled diagram or chart.) [10]

(c) Explain, with examples, how the Smart Parking System could use feedback from users and sensors
after deployment to enhance performance and user experience. [8]

Q4 TOTAL MARKS: 20

Computer Science Paper 3
Answering key & Marking Scheme - Practical

Model Paper 2025

Time Allowed: 2 hours 30 minutes
Total Marks: 120

You must answer on the question paper.

You must bring a soft pencil (preferably type B or HB), a clean eraser, and a dark blue or black pen. You
may use a simple calculator if needed.

Before attempting the paper, write your name, candidate number, centre name, and centre number clearly in
the designated spaces.

Instructions for Candidates

Answer all questions.

Write your answer to each question in the space provided.
You must show all necessary working clearly.

Do not use an erasable pen or correction fluid.

Avoid writing over any barcodes printed on the paper.

Information for Candidates

° This paper consists of a total of 120 marks.
° The number of marks assigned for every question or its parts is indicated within brackets [].

Please read all questions carefully and follow the instructions exactly to ensure your responses are properly
evaluated.

Q1.The following flowchart represents a program segment that determines whether a number is
prime.

Start

/R\eu;u. b~

[smaller=a |

True =

[smaler=5]
~ False
 rinkh TruF-
1

False |

[[7=1.gcd=0 |

> / Printa

] iziel | < |

(a) Write the corresponding pseudo code for this flowchart using if, for, and break statements. [6]

Answer:
BEGIN
INPUT number
flag < 0
FOR i « 2 TO number/2 DO
IF number MOD i =0 THEN
flag «— 1
ENDIF
ENDFOR
IF flag =0 THEN
OUTPUT "Prime"
ELSE
OUTPUT "Not Prime"
ENDIF
END
Marking Scheme:
* 1 mark for correctly accepting input.
* 2 marks for implementing the correct loop and divisor check.
* 2 marks for using the correct condition to identify a prime number.
* 1 mark for producing the correct output.

(b) You are required to design a binary search algorithm for an ascending list of numbers.
(i) Write the pseudo code of the algorithm. [3]
Answer:

BEGIN
INPUT number
flag < 0
FOR i « 2 TO number /2 DO
IF number MOD 1 =0 THEN
flag «— 1

BREAK
ENDIF
ENDFOR
IF flag =0 THEN
OUTPUT "Prime"

ELSE
OUTPUT "Not Prime"
ENDIF
END
Marking Scheme:

Criterion Description Marks
Initialization Correctly initializes low, high, and loop condition (WHILE low < high). 1
Logic of mid and comparisons | Correct computation of mid and comparisons with search_value. 1
Update and output Correct updating of low or high and proper output of result. 1
(ii) Trace the algorithm manually for the list:

[2,4,6,8,10,12, 14, 16] to find the value 10.
Show all variable values (low, high, mid). (4]
Answer:
Step | low | high mid list[mid] Comparison Action

1 0 7 (0+7)/2=3 8 8 <10 — search right half low =4

2 4 7 (4+7)/2=15 12 12 > 10 — search left half high = 4

3 4 4 (4+4)2 =4 10 10=10 FOUND
Marking Scheme:

* 1 mark for setting the initial values of low, high, and mid.

* 1 mark for correctly updating mid in each iteration.

* 1 mark for performing the correct comparison and action.

* 1 mark for producing the correct final output.

(¢) Two sorting algorithms are shown below.

Algorithm A (Bubble Sort)

Algorithm B (Insertion Sort)

for i in range(len(A)-1):
for j in range(len(A)-1):
if A[j] > A[j+1]:
Aljl, Afj+1] = A[j+1], A[j]

for i in range(1, len(A)):
key = A[i]
j=i-1
while j >= 0 and A[j] > key:
Alj+1] = Alj]

ji—=1
Alj+1] = key
i. State one difference between the working mechanism of Algorithm A and B. [2]
Answer:
Aspect Algorithm A — Bubble Sort Algorithm B — Insertion Sort
Working Repeatedly compares adjacent elements and | Builds the sorted list one element at a time
mechanism swaps them until the largest element by inserting each new element into its

“bubbles up” to its correct position after correct position among already sorted
each pass. elements.

Marking Scheme (2 marks):
* 1 mark for correctly describing the mechanism of Bubble Sort.
* 1 mark for correctly describing the mechanism of Insertion Sort.

ii. Which algorithm is more efficient for nearly sorted data? Justify your answer. [2]
Answer:
Algorithm B (Insertion Sort) is more efficient for nearly sorted data.

Justification:

Insertion Sort requires very few comparisons and shifts when elements are already close to their correct
positions, resulting in a time complexity close to O(n). In contrast, Bubble Sort still performs unnecessary
comparisons and passes through the list, making it slower.

Marking Scheme:

* 1 mark for correctly identifying Insertion Sort.

* 1 mark for providing a logical justification (fewer comparisons/shifts for nearly sorted data).

iii. Perform a single pass of Algorithm A for the list [9, 5, 2, 7]. Show the array after the pass. [3]
Answer:

Algorithm A — Bubble Sort (Single Pass):
Compare adjacent elements and swap if the first is greater than the second.

Comparison Elements Compared Swap? List after comparison
1 9and 5 Yes [5,9,2,7]
2 9 and 2 Yes [5,2,9,7]
3 9 and 7 Yes [5,2,7,9]

Array after one pass: [5, 2, 7, 9]
Marking Scheme (3 marks):

* 1 mark for correctly showing pairwise comparisons.
* 1 mark for correctly indicating the swaps.
* 1 mark for showing the correct final list after the first pass.

(d) The Fibonacci sequence can be defined recursively as:
F@0)=0,F1) =1, F(n) = F(n-1) + F(n-2)
i. Write a in Python named Fibonacci (n) that prints the nth term. 4]

Answer:

def Fibonacci(n):
ifn==0:
return 0
elifn==1:
return 1
else:
return Fibonacci(n-1) + Fibonacci(n-2)

Marking Scheme:

* 1 mark for correctly handling the base case when n == 0.
* 1 mark for correctly handling the base case when n == 1.

* 1 mark for using the correct recursive call: Fibonacci(n-1) + Fibonacci(n-2).
* 1 mark for correct function structure and return/output statement.

ii. Explain two advantages and two disadvantages of recursion compared to iteration. (4]

Answer:
Advantages of Recursion:
1. Simpler logic and readability: Complex problems like tree traversal or Fibonacci sequence become
easier to understand and implement recursively.
2. Reduces code length: Recursive functions often require fewer lines of code than equivalent iterative
solutions.
Disadvantages of Recursion:
1. Higher memory usage: Each recursive call adds a new layer to the call stack, consuming more
memory.
2. Slower execution: Recursive calls involve overhead due to repeated function calls and return
operations, making them less efficient than iteration.
Marking Scheme:
* 1 mark each for two valid advantages.
* 1 mark each for two valid disadvantages.
Q1 TOTAL MARKS: 28

Q2.

(a) A Python program is intended to calculate the average of 5 test scores but contains errors.

def average score():
total =0
for i in range(1,5):
score = input(" Enter score: ")
total = total + score
avg = total / §
print("'Average score is: "' + avg)
average score()

i. Identify four errors in the code (syntax or logic). [4]
Answer:

i The loop runs only 4 times

range (1, 5) collects 4 scores instead of 5.

i Input is not converted to a number

score = input () returns a string but is added to an integer.

i String concatenation error

"Average score is: " + avg — cannot add string and number.
i Logical error in average calculation

Dividing by 5 even though only 4 scores are taken.

Marking Scheme:

* 1 mark for identifying that the loop runs only 4 times (range(1,5)).

* 1 mark for identifying that input() is not converted to a numeric type.

* 1 mark for identifying that the average calculation is wrong (divides by 5 while adding 4 scores).
* 1 mark for identifying that the print statement incorrectly concatenates a string with a number.

ii. Write the corrected program. [6]
Answer:
def average score():

total =0

num_scores =5 # number of scores to collect

for i in range(num_scores):
score = float(input("Enter score: "))
total += score
avg = total / num_scores
print("Average score is:", avg)

average score()
Marking Scheme:

average score())

Criterion Marks
1. Correct loop range to collect all 5 scores (e.g., for i in range (5) or using a 1 mark
variable like num scores = 5)
2. Correct conversion of input to numeric type (int () or £loat ()) 1 mark
3. Correct accumulation of total using total += score 1 mark
4. Correct calculation of average using division by 5 (or variable num scores) 1 mark
5. Correct print statement without string—number concatenation error (e.g., using 1 mark
comma or str())
6. Correct function structure and function call (def average score () : and 1 mark

(b) A teacher maintains a list of student names and their marks.

students = ["Ali", "Sara", "Bilal", "Hira"|
marks = [85, 92, 71, 66]
for i in range(5):

print(students[i], "":", marks]i])

i. What runtime error will occur in this code?

Answer:

2]

The program will give an IndexError: list index out of range because the loop goes to index 4, but both lists

only have 4 items (last index is 3).
Marking Scheme:

* 1 mark for saying the error is IndexError.
* 1 mark for saying the loop goes past the list length.

ii. Rewrite the for loop to correct the error and ensure all data displays correctly.

Answer:
students = ["Ali", "Sara", "Bilal", "Hira"]
marks = [85, 92, 71, 66]

for i in range(len(students)):
print (students[i], ":", marks([i])

Marking Scheme:
* 1 mark for using len (students) to determine the loop range
* 1 mark for correctly displaying all student names with their marks

iii. Modify the code to display only students who scored above 80.

Answer:

students = ["Ali", "Sara", "Bilal", "Hira"]
marks = [85, 92, 71, 66]

2]

[3]

for i in range(len(students)):
if marks([i] > 80:
print (students[i], ":", marks([i])

Marking Scheme:

* 1 mark for using a loop to go through all students

* 1 mark for using an if condition to check marks[i] > 80

* 1 mark for correctly printing only the students with marks above 80

iv. Show the expected output.

Answer:

Ali : 85

Sara : 92

Marking Scheme:

* 1 mark for including "Ali : 85"

* 1 mark for including "Sara : 92"

* 1 mark for showing only the students who scored above 80

(c) You are given a file data.txt containing integers separated by spaces.

Write a Python code segment to:

1. Open the file and read its contents.

2. Display the largest and smallest numbers.

3. Close the file.

(Use appropriate file-handling syntax and comments.)

Answer:
Open the file in read mode

file = open("data.txt", "r")

Read the contents of the file
data = file.read()

Split the contents into a list of numbers and convert to integers

numbers = [int(x) for x in data.split()]

Find the largest and smallest numbers
largest = max (numbers)
smallest = min (numbers)

Display the results
print ("Largest number:", largest)
print ("Smallest number:", smallest)

Close the file
file.close ()

Marking Scheme:

* 1 mark for opening the file correctly

* 1 mark for reading the file contents

» 2 marks for splitting the data and converting to integers
* 1 mark for finding the largest number

* 1 mark for finding the smallest number

* 1 mark for displaying the largest number correctly

* 1 mark for displaying the smallest number correctly

* 1 mark for closing the file

[3]

8]

(d) The following function is meant to check whether a given string is a palindrome (reads same
forward and backward).\

def palindrome(word):

reyv = "nn

for i in range(len(word)):
rev = rev + word[i]

if word ==rev:
return True

else:
return False

i. Identify the logical error. 2]

Answer:

* The function does not reverse the string.

*rev = rev + word[i] adds characters in the original order instead of reverse order, so rev is the same as
word and the palindrome check is incorrect.

Marking Scheme:
* 1 mark for identifying that the string is not reversed correctly
* 1 mark for explaining that the comparison with the original word will always be true for all strings

ii. Write the corrected function. [4]

Answer:

def palindrome (word) :

rev = mn

for i in range(len(word)-1, -1, -1): # Loop from end to start
rev = rev + word[1i]

if word == rev:
return True

else:
return False

Marking Scheme:

* 1 mark for initializing rev correctly

* 1 mark for using a loop that reverses the string (range (len (word) -1, -1, -1))
* 1 mark for correctly accumulating characters in reverse order

* 1 mark for returning True if word == rev and False otherwise

iii. Predict the output of the corrected function for each input: [3]
° palindrome("'level")

° palindrome(''python")

° palindrome('"'madam'")

Answer:

* palindrome ("level") — True

* palindrome ("python") — False
* palindrome ("madam") — True

Marking Scheme:

* 1 mark for correctly predicting the output of "level"
* 1 mark for correctly predicting the output of "python"
* 1 mark for correctly predicting the output of "madam"

iv. Suggest one test case for a boundary condition and justify your choice. [3]

Answer:

* Test case: palindrome ("") (empty string)

» Justification: An empty string is a boundary case because it has zero length. The function should handle it
correctly and return True, as an empty string reads the same forward and backward.

Marking Scheme:

* 1 mark for suggesting a valid boundary test case

* 1 mark for explaining why it is a boundary case

* 1 mark for correct justification of the expected result

Q2 TOTAL MARKS: 40

Q3.

A city’s smart parking management system records available parking slots and car entries.
Each parking slot is represented by a class Slot with attributes:

SlotID, Status (Empty or Occupied), and VehicleNo.

(a) What do you understand by base class in OOP. 2]

Answer:

* A base class (also called a parent class or superclass) is a class that provides common attributes and
methods which can be inherited by other classes.

« It serves as a template for creating derived classes, allowing code reuse and establishing a hierarchical
relationship in object-oriented programming.

Marking Scheme:
* 1 mark for defining a base class as a parent or superclass
* 1 mark for explaining that it provides attributes/methods that can be inherited

(b) Define a Python class Slot with:
° A constructor to initialize all attributes.
° A method display_info() that prints the slot details neatly. [6]

Answer:

class Slot:
def init (self, SlotID, Status, VehicleNo):
self.SlotID = SlotID
self.Status = Status
self.VehicleNo = VehicleNo
def display info(self):
print ("Slot ID:", self.SlotID)
print ("Status:", self.Status)
print ("Vehicle Number:", self.VehicleNo)
Marking Scheme:
* 1 mark for defining the class correctly
» 2 marks for writing the constructor (init) with all attributes
* 1 mark for initializing each attribute correctly

* 2 marks for defining display info() that prints all slot details neatly

(c) Write a function assign_slot(slots, vehicle no) that:
° Finds the first Empty slot in the list slots.
° Assigns the vehicle number and changes the slot’s status to Occupied.

° Prints an appropriate message.
(Assume there are 10 slots in the parking system.)

Answer:

def assign slot(slots, vehicle no):
Loop through all slots to find the first empty one
for slot in slots:
if slot.Status == "Empty":
slot.VehicleNo = vehicle no
slot.Status = "Occupied"
print (f"Vehicle {vehicle no} has been assigned to Slot {slot.SlotID}.")
return
If no empty slot is found
print ("No empty slots available.")
Marking Scheme:
* 2 marks for defining the function correctly with parameters slots and vehicle no
* 2 marks for correctly finding the first Empty slot
» 2 marks for assigning the vehicle number and updating the status
* 1 mark for printing an appropriate success message

* 1 mark for handling the case when no empty slot is available

(d) Write another function release_slot(slots, vehicle_no) that:

° Searches for the vehicle number,

° Frees the slot (sets status to Empty), and
° Displays confirmation.

Answer:

def release slot(slots, vehicle no):
Loop through all slots to find the vehicle
for slot in slots:

if slot.VehicleNo == vehicle no:
slot.VehicleNo = None
slot.Status = "Empty"

print (f"Vehicle {vehicle no} has been released from Slot {slot.SlotID}.")

return
If vehicle number is not found
print (f"Vehicle {vehicle no} not found in any slot.")

Marking Scheme:

* 2 marks for defining the function correctly with parameters slots and vehicle no
» 2 marks for correctly searching for the vehicle number

* 2 marks for freeing the slot (setting status to Empty and clearing vehicle number)

* 1 mark for printing a confirmation message

* 1 mark for handling the case when the vehicle number is not found

(e) Represent the parking slots in a tabular format after assigning three cars:

SlotID VehicleNo Status
S1 ABC-101 Occupied
S2 XYZ-235 Occupied
S3 LMN-412 Occupied
S4-S10 - Empty
Write the Python list initialization to represent this structure.
Answer:
slots = [

Slot("S1", "Occupied", "ABC-101"),

8]

8]

8]

Slot("S2", "Occupied", "XYZ-235"),

Slot("S3", "Occupied", "LMN-412"),

Slot("S4", "Empty", None),

Slot("S5", "Empty", None),

Slot("S6", "Empty", None),

Slot("S7", "Empty", None),

Slot("S8", "Empty", None),

Slot("S9", "Empty", None),

Slot("S10", "Empty", None)
]
Marking Scheme:
» 2 marks for correctly representing the first three occupied slots with vehicle numbers
* 2 marks for correctly representing the remaining empty slots
» 2 marks for correct use of Slot class constructor for initialization
* 2 marks for matching SlotID, VehicleNo, and Status accurately

Q3 TOTAL MARKS: 32

Q4.

(a) Assume the system records parking data over time and uses Al-based prediction to forecast
busy hours.

Explain two software testing methods suitable for verifying the Smart Parking System before
deployment. [2]

Answer:
* Unit Testing: This method tests individual components or functions of the system (e.g.,
assigning/releasing slots, data recording, prediction algorithms) to ensure each part works correctly.

* System Testing: This method tests the complete integrated system, including Al-based predictions, slot
management, and user interface, to verify that the Smart Parking System functions as expected in real-world
scenarios.

Marking Scheme:
* 1 mark for correctly explaining unit testing
* 1 mark for correctly explaining system testing

(b) Explain with an example how a simple supervised machine learning approach (like linear
regression or classification) could be integrated into this system to predict slot availability.
(Answer in 80-100 words, optionally with a labelled diagram or chart.) [10]

Answer:

A simple supervised learning approach can be used to predict parking slot availability based on historical
data. For example, a linear regression model can be trained using past data with features like time of day,
day of week, and number of cars entering/exiting as inputs, and available slots as the target. The model
learns patterns to forecast busy hours and expected free slots.

Example:
Input: hour=9, day=Monday, current occupied=70%
Output: Predicted available slots = 15

Predicted Slot Availability

12 A

10 A

Available Slots
[=2]

0 2 4 8 12 14 16 18 20 24 24
Hour of the Day

Marking Scheme:

* 3 marks for explaining supervised learning in context
* 3 marks for identifying features and target variable

* 2 marks for providing a clear example of prediction

» 2 marks for optional diagram/chart or clear description

(c) Explain, with examples, how the Smart Parking System could use feedback from users and
sensors after deployment to enhance performance and user experience. [8]

Answer:

After deployment, the Smart Parking System can collect feedback from users (e.g., satisfaction surveys,
complaints about finding slots) and sensor data (e.g., occupancy sensors, entry/exit counts). This data can be
used to improve slot allocation algorithms, optimize parking predictions, and adjust dynamic pricing.

Examples:

o If users report long waits at certain hours, the system can predict busy periods and suggest alternative
slots.

) Sensor data showing frequent empty slots in some areas can be used to reassign vehicles efficiently.
. Collecting feedback on app usability can help enhance the user interface for smoother navigation and
notifications.

Marking Scheme:

* 2 marks for explaining the role of user feedback

* 2 marks for explaining the role of sensor data

+ 2 marks for giving examples related to prediction and slot allocation

« 2 marks for giving examples related to improving user experience or interface

Q4 TOTAL MARKS: 20

	CS-HSSC Adv-Model Paper 3.docx
	Computer Science Paper 3
	Practical
	Model Paper 2025
	Instructions for Candidates
	Information for Candidates
	Q1.
	The following flowchart represents a program segment that determines whether a number is prime.
	(b) You are required to design a binary search algorithm for an ascending list of numbers.
	(c) Two sorting algorithms are shown below.
	(d) The Fibonacci sequence can be defined recursively as:​F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)
	Q2.
	(a)​A Python program is intended to calculate the average of 5 test scores but contains errors.
	(b)​A teacher maintains a list of student names and their marks.
	(c) You are given a file data.txt containing integers separated by spaces.​Write a Python code segment to:
	(d)​The following function is meant to check whether a given string is a palindrome (reads same forward and backward).

	Q3.
	(d) Write another function release_slot(slots, vehicle_no) that:
	(e) Represent the parking slots in a tabular format after assigning three cars:​​​​[8]
	Explain two software testing methods suitable for verifying the Smart Parking System before deployment.​​​​​​​​​​ ​​​ ​[2]

	CS-HSSC Adv-Paper 3-Answer key & Marking Scheme.docx
	Computer Science Paper 3
	Answering key & Marking Scheme - Practical
	Model Paper 2025
	Instructions for Candidates
	Information for Candidates
	Q1.The following flowchart represents a program segment that determines whether a number is prime.
	(c) Two sorting algorithms are shown below.
	• 1 mark for correctly showing pairwise comparisons.​• 1 mark for correctly indicating the swaps.​• 1 mark for showing the correct final list after the first pass.
	(d) The Fibonacci sequence can be defined recursively as:​F(0) = 0, F(1) = 1, F(n) = F(n-1) + F(n-2)
	Q2.
	(a)​A Python program is intended to calculate the average of 5 test scores but contains errors.
	(b)​A teacher maintains a list of student names and their marks.
	
	
	(c) You are given a file data.txt containing integers separated by spaces.​Write a Python code segment to:
	(d)​The following function is meant to check whether a given string is a palindrome (reads same forward and backward).\

	Q3.
	
	(d) Write another function release_slot(slots, vehicle_no) that:
	
	 (e) Represent the parking slots in a tabular format after assigning three cars:​​​[8]
	Explain two software testing methods suitable for verifying the Smart Parking System before deployment.​​​​​​​​​​ ​​​ [2]

